Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.894
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1322113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585654

RESUMO

Background: Dopamine, a frequently used therapeutic agent for critically ill patients, has been shown to be implicated in clinical infections recently, however, the precise mechanisms underlying this association remain elusive. Klebsiella quasivariicola, a novel strain belonging to the Klebsiella species, exhibits potential pathogenic attributes. The impact of dopamine on K. quasivariicola infection has aroused our interest. Objective: Considering the contribution of host immune factors during infection, this study aimed to investigate the intricate interactions between K. quasivariicola, dopamine, and macrophages were explored. Methods: RAW264.7 cells and C57/BL6 mice were infected with K. quasivariicola, and the bacterial growth within macrophage, the production of inflammatory cytokines and the pathological changes in mice lungs were detected, in the absence or presence of dopamine. Results: Dopamine inhibited the growth of K. quasivariicola in the medium, but promoted bacterial growth when co-cultured with macrophages. The expression of proinflammatory cytokines increased in RAW 264.7 cells infected with K. quasivariicola, and a significant rise was observed upon the addition of dopamine. The infection of K. quasivariicola in mice induced an inflammatory response and lung injury, which were exacerbated by the administration of dopamine. Conclusions: Our findings suggest that dopamine may be one of the potential risk factors associated with K. quasivariicola infection. This empirical insight provides solid references for clinical precision medicine. Furthermore, an in vitro model of microbes-drugs-host immune cells for inhibitor screening was proposed to more accurately replicate the complex in vivo environment. This fundamental work had contributed to the present understanding of the crosstalk between pathogen, dopamine and host immune cells.


Assuntos
Infecções por Klebsiella , Pulmão , Humanos , Camundongos , Animais , Pulmão/patologia , Dopamina , Klebsiella pneumoniae/metabolismo , Macrófagos/microbiologia , Citocinas/metabolismo , Klebsiella/metabolismo , Proliferação de Células , Infecções por Klebsiella/microbiologia , Camundongos Endogâmicos C57BL
2.
Surg Infect (Larchmt) ; 25(3): 247-252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588519

RESUMO

Background: The prevalence of community-onset infections of extended spectrum ß-lactamase (ESBL)-producing strains has increased globally, yet surveillance and resistance in patients with oral and maxillofacial surgery site infections is less investigated. Patients and Methods: A retrospective cohort study was performed to investigate risk factors and resistance of ESBL-producing Escherichia coli (ESBL-EC) and ESBL-producing Klebsiella pneumonia (ESBL-KP) among community-onset patients with oral and maxillofacial surgery during January 2010 to December 2016. Demographic features, predisposing factors, clinical outcomes, and antibiotic agent costs were analyzed. Antimicrobial susceptibility testing of nine antimicrobial agents against ESBL-KP and ESBL-EC were measured. Results: Among 2,183 cultures from infection sites in patients with oral and maxillofacial surgery site (45 cases [2.06%]) were confirmed with community-onset ESBL-KP (24; 1.10%) or ESBL-EC (21; 0.96%) infection. Multivariable analysis showed the independent risk factors for ESBL-producing bacterial infection were prior history of hospitalization (adjusted odds ratio [aOR], 10.984; 95% confidence interval [CI], 5.965-59.879; p = 0.025) and malignant condition (aOR, 3.373; 95% CI 2.947-7.634; p = 0.024). Based on antimicrobial susceptibility testing, 57.8% ESBL-KP and ESBL-EC were found receiving inappropriate antimicrobial therapy, and antibiotic agent costs were higher than non-ESBL-producing bacterial infections ($493.8 ± $367.3 vs. $304.1 ± $334.7; p = 0.031). Conclusions: Infections caused by ESBL-KP and ESBL-EC among patients in sites with oral and maxillofacial surgery are associated with prior history of hospitalization and malignant conditions. Prompt detection and appropriate antibiotic administration for community-onset infections of ESBLs are necessary for such populations.


Assuntos
Infecções por Escherichia coli , Infecções por Klebsiella , Pneumonia , Humanos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Estudos Retrospectivos , beta-Lactamases , Escherichia coli , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fatores de Risco , Klebsiella , Infecção da Ferida Cirúrgica/tratamento farmacológico , Infecção da Ferida Cirúrgica/epidemiologia
3.
J Nepal Health Res Counc ; 21(4): 578-586, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38616586

RESUMO

BACKGROUND: The intestinal colonization and transmission of antibiotic-resistant Enterobacteriales to renal transplant recipients may pose a threat to them because they are profoundly immunocompromised and vulnerable to infection. Hence, it is crucial to identify these antibiotic-resistant fecal Enterobacteriales harboring high-risk populations. The objective of this study was to determine antibiotic resistance as well as ß-lactamases production in fecal Enterobacteriales among renal transplant recipients. METHODS: The stool samples, one collected from each transplant recipient, were processed for isolation and identification of Enterobacteriales and were tested for their antibiotic susceptibility, extended-spectrum ß-lactamase, and metallo-ß-lactamase production by standard methods. RESULTS: A total of 103 Enterobacteriales comprising of Escherichia coli (86.4%), Klebsiella species (11.7%), and Citrobacter species (1.9%) were isolated and more than 60% of the E. coli were found resistant to ceftazidime and ciprofloxacin and around half of the Klebsiella species were resistant to ceftazidime and fluroquinolones. The extended-spectrum ß-lactamase production was seen in 3.4% and 8.3% and metallo-ß-lactamase production in 24.7% and 33.3% of E. coli and Klebsiella species, respectively. The high proportion of ß-lactamase-producers were resistant to piperacillin-tazobactam, meropenem, gentamicin, and amikacin than ß-lactamases non-producers. CONCLUSION: Since the antibiotic resistance is higher in fecal Enterobacteriales, each renal transplant recipient should be screened for these highly resistant intestinal colonizers after transplantation in order to prevent infections and to reduce the rate of transplant failure due to infections.


Assuntos
Antibacterianos , Transplante de Rim , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ceftazidima , Transplantados , Escherichia coli , Nepal , beta-Lactamases , Klebsiella
4.
Biochemistry (Mosc) ; 89(Suppl 1): S71-S89, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621745

RESUMO

The problem of antibiotic resistance is currently very acute. Numerous research and development of new antibacterial drugs are being carried out that could help cope with various infectious agents. One of the promising directions for the search for new antibacterial drugs is the search among the probiotic strains present in the human gastrointestinal tract. This review is devoted to characteristics of one of these probiotic strains that have been studied to date: Limosilactobacillus reuteri. The review discusses its properties, synthesis of various compounds, as well as role of this strain in modulating various systems of the human body. The review also examines key characteristics of one of the most harmful among the currently known pathogenic organisms, Klebsiella, which is significantly resistant to antibiotics existing in medical practice, and also poses a great threat of nosocomial infections. Discussion of characteristics of the two strains, which have opposite effects on human health, may help in creation of new effective antibacterial drugs without significant side effects.


Assuntos
Lactobacillus , Limosilactobacillus reuteri , Humanos , Klebsiella , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
5.
Genome Med ; 16(1): 58, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637822

RESUMO

BACKGROUND: Klebsiella pneumoniae is a major bacterial and opportunistic human pathogen, increasingly recognized as a healthcare burden globally. The convergence of resistance and virulence in K. pneumoniae strains has led to the formation of hypervirulent and multidrug-resistant strains with dual risk, limiting treatment options. K. pneumoniae clones are known to emerge locally and spread globally. Therefore, an understanding of the dynamics and evolution of the emerging strains in hospitals is warranted to prevent future outbreaks. METHODS: In this study, we conducted an in-depth genomic analysis on a large-scale collection of 328 multidrug-resistant (MDR) K. pneumoniae strains recovered from 239 patients from a single major hospital in the western coastal city of Jeddah in Saudi Arabia from 2014 through 2022. We employed a broad range of phylogenetic and phylodynamic methods to understand the evolution of the predominant clones on epidemiological time scales, virulence and resistance determinants, and their dynamics. We also integrated the genomic data with detailed electronic health record (EHR) data for the patients to understand the clinical implications of the resistance and virulence of different strains. RESULTS: We discovered a diverse population underlying the infections, with most strains belonging to Clonal Complex 14 (CC14) exhibiting dominance. Specifically, we observed the emergence and continuous expansion of strains belonging to the dominant ST2096 in the CC14 clade across hospital wards in recent years. These strains acquired resistance mutations against colistin and extended spectrum ß-lactamase (ESBL) and carbapenemase genes, namely blaOXA-48 and blaOXA-232, located on three distinct plasmids, on epidemiological time scales. Strains of ST2096 exhibited a high virulence level with the presence of the siderophore aerobactin (iuc) locus situated on the same mosaic plasmid as the ESBL gene. Integration of ST2096 with EHR data confirmed the significant link between colonization by ST2096 and the diagnosis of sepsis and elevated in-hospital mortality (p-value < 0.05). CONCLUSIONS: Overall, these results demonstrate the clinical significance of ST2096 clones and illustrate the rapid evolution of an emerging hypervirulent and MDR K. pneumoniae in a clinical setting.


Assuntos
Klebsiella pneumoniae , Klebsiella , Humanos , Klebsiella/genética , Centros de Atenção Terciária , Filogenia , Plasmídeos/genética , beta-Lactamases/genética , Antibacterianos
6.
BMC Microbiol ; 24(1): 135, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654237

RESUMO

BACKGROUND: The emergence and spread of ß-lactamase-producing Klebsiella spp. has been associated with a substantial healthcare burden resulting in therapeutic failures. We sought to describe the proportion of phenotypic resistance to commonly used antibiotics, characterize ß-lactamase genes among isolates with antimicrobial resistance (AMR), and assess the correlates of phenotypic AMR in Klebsiella spp. isolated from stool or rectal swab samples collected from children being discharged from hospital. METHODS: We conducted a cross-sectional study involving 245 children aged 1-59 months who were being discharged from hospitals in western Kenya between June 2016 and November 2019. Whole stool or rectal swab samples were collected and Klebsiella spp. isolated by standard microbiological culture. ß-lactamase genes were detected by PCR whilst phenotypic antimicrobial susceptibility was determined using the disc diffusion technique following standard microbiology protocols. Descriptive analyses were used to characterize phenotypic AMR and carriage of ß-lactamase-producing genes. The modified Poisson regression models were used to assess correlates of phenotypic beta-lactam resistance. RESULTS: The prevalence of ß-lactamase carriage among Klebsiella spp. isolates at hospital discharge was 62.9% (154/245). Antibiotic use during hospitalization (adjusted prevalence ratio [aPR] = 4.51; 95%CI: 1.79-11.4, p < 0.001), longer duration of hospitalization (aPR = 1.42; 95%CI: 1.14-1.77, p < 0.002), and access to treated water (aPR = 1.38; 95%CI: 1.12-1.71, p < 0.003), were significant predictors of phenotypically determined ß-lactamase. All the 154 ß-lactamase-producing Klebsiella spp. isolates had at least one genetic marker of ß-lactam/third-generation cephalosporin resistance. The most prevalent genes were blaCTX-M 142/154 (92.2%,) and blaSHV 142/154 (92.2%,) followed by blaTEM 88/154 (57.1%,) and blaOXA 48/154 (31.2%,) respectively. CONCLUSION: Carriage of ß-lactamase producing Klebsiella spp. in stool is common among children discharged from hospital in western Kenya and is associated with longer duration of hospitalization, antibiotic use, and access to treated water. The findings emphasize the need for continued monitoring of antimicrobial susceptibility patterns to inform the development and implementation of appropriate treatment guidelines. In addition, we recommend measures beyond antimicrobial stewardship and infection control within hospitals, improved sanitation, and access to safe drinking water to mitigate the spread of ß-lactamase-producing Klebsiella pathogens in these and similar settings.


Assuntos
Antibacterianos , Infecções por Klebsiella , Klebsiella , Testes de Sensibilidade Microbiana , beta-Lactamases , Humanos , Quênia/epidemiologia , beta-Lactamases/genética , Lactente , Klebsiella/genética , Klebsiella/efeitos dos fármacos , Klebsiella/enzimologia , Klebsiella/isolamento & purificação , Pré-Escolar , Feminino , Masculino , Estudos Transversais , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Antibacterianos/farmacologia , Fenótipo , Fezes/microbiologia , Alta do Paciente , Prevalência
7.
Ann Clin Microbiol Antimicrob ; 23(1): 24, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448920

RESUMO

BACKGROUND: Klebsiella variicola is considered a newly emerging human pathogen. Clinical isolates of carbapenemase and broad-spectrum ß-lactamase-producing K. variicola remain relatively uncommon. A strain of K. variicola 4253 was isolated from a clinical sample, and was identified to carry the blaIMP-4 and blaSFO-1 genes. This study aims to discern its antibiotic resistance phenotype and genomic characteristics. METHODS: Species identification was conducted using MALDI-TOF/MS. PCR identification confirmed the presence of the blaIMP-4 and blaSFO-1 genes. Antibiotic resistance phenotype and genomic characteristics were detected by antimicrobial susceptibility testing and whole-genome sequencing. Plasmid characterization was carried out through S1-PFGE, conjugation experiments, Southern blot, and comparative genomic analysis. RESULTS: K. variicola 4253 belonged to ST347, and demonstrated resistance to broad-spectrum ß-lactamase drugs and tigecycline while being insensitive to imipenem and meropenem. The blaIMP-4 and blaSFO-1 genes harbored on the plasmid p4253-imp. The replicon type of p4253-imp was identified as IncHI5B, representing a multidrug-resistant plasmid capable of horizontal transfer and mediating the dissemination of drug resistance. The blaIMP-4 gene was located on the In809-like integrative element (Intl1-blaIMP-4-aacA4-catB3), which circulates in Acinetobacter and Enterobacteriaceae. CONCLUSIONS: This study reports the presence of a strain of K. variicola, which is insensitive to tigecycline, carrying a plasmid harboring blaIMP-4 and blaSFO-1. It is highly likely that the strain acquired this plasmid through horizontal transfer. The blaIMP-4 array (Intl1-blaIMP-4-aacA4-catB3) is also mobile in Acinetobacter and Enterobacteriaceae. So it is essential to enhance clinical awareness and conduct epidemiological surveillance on multidrug-resistant K. variicola, conjugative plasmids carrying blaIMP-4, and the In809 integrative element.


Assuntos
Acinetobacter , Klebsiella , Humanos , Tigeciclina/farmacologia , Klebsiella/genética , Plasmídeos/genética , beta-Lactamases/genética
8.
Virol J ; 21(1): 56, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448926

RESUMO

BACKGROUND: Southwest China is one of the largest karst regions in the world. Karst environment is relatively fragile and vulnerable to human activities. Due to the discharge of sewage and domestic garbage, the karst system may be polluted by pathogenic bacteria. The detection of bacterial distribution and identification of phage capable of infecting them is an important approach for environmental assessment and resource acquisition. METHODS: Bacteria and phages were isolated from karst water in southwest China using the plate scribing and double plate method, respectively. Isolated phage was defined by transmission electron microscopy, one-step growth curve and optimal multiplicity of infection (MOI). Genomic sequencing, phylogenetic analysis, comparative genomic and proteomic analysis were performed. RESULTS: A Klebsiella quasipneumoniae phage was isolated from 32 isolates and named KL01. KL01 is morphologically identified as Caudoviricetes with an optimal MOI of 0.1, an incubation period of 10 min, and a lysis period of 60 min. The genome length of KL01 is about 45 kb, the GC content is 42.5%, and it contains 59 open reading frames. The highest average nucleotide similarity between KL01 and a known Klebsiella phage 6939 was 83.04%. CONCLUSIONS: KL01 is a novel phage, belonging to the Autophagoviridae, which has strong lytic ability. This study indicates that there were not only some potential potentially pathogenic bacteria in the karst environment, but also phage resources for exploration and application.


Assuntos
Bacteriófagos , Humanos , Bacteriófagos/genética , Filogenia , Proteômica , Klebsiella/genética , Bactérias , China
9.
Toxins (Basel) ; 16(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38535807

RESUMO

During an experiment where we were cultivating aflatoxigenic Aspergillus flavus on peanuts, we accidentally discovered that a bacterium adhering to the peanut strongly inhibited aflatoxin (AF) production by A. flavus. The bacterium, isolated and identified as Klebsiella aerogenes, was found to produce an AF production inhibitor. Cyclo(l-Ala-Gly), isolated from the bacterial culture supernatant, was the main active component. The aflatoxin production-inhibitory activity of cyclo(l-Ala-Gly) has not been reported. Cyclo(l-Ala-Gly) inhibited AF production in A. flavus without affecting its fungal growth in a liquid medium with stronger potency than cyclo(l-Ala-l-Pro). Cyclo(l-Ala-Gly) has the strongest AF production-inhibitory activity among known AF production-inhibitory diketopiperazines. Related compounds in which the methyl moiety in cyclo(l-Ala-Gly) is replaced by ethyl, propyl, or isopropyl have shown much stronger activity than cyclo(l-Ala-Gly). Cyclo(l-Ala-Gly) did not inhibit recombinant glutathione-S-transferase (GST) in A. flavus, unlike (l-Ala-l-Pro), which showed that the inhibition of GST was not responsible for the AF production-inhibition of cyclo(l-Ala-Gly). When A. flavus was cultured on peanuts dipped for a short period of time in a dilution series bacterial culture broth, AF production in the peanuts was strongly inhibited, even at a 1 × 104-fold dilution. This strong inhibitory activity suggests that the bacterium is a candidate for an effective biocontrol agent for AF control.


Assuntos
Aflatoxinas , Aspergillus flavus , Klebsiella , Dipeptídeos , Arachis , Glutationa Transferase
10.
Environ Int ; 185: 108554, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479059

RESUMO

Among the most problematic bacteria with clinical relevance are the carbapenem-resistant Enterobacterales (CRE), as there are very limited options for their treatment. Treated wastewater can be a route for the release of these bacteria into the environment and the population. The aim of this study was to isolate CRE from treated wastewater from the Zagreb wastewater treatment plant and to determine their phenotypic and genomic characteristics. A total of 200 suspected CRE were isolated, 148 of which were confirmed as Enterobacterales by MALDI-TOF MS. The predominant species was Klebsiella spp. (n = 47), followed by Citrobacter spp. (n = 40) and Enterobacter cloacae complex (cplx.) (n = 35). All 148 isolates were carbapenemase producers with a multidrug-resistant phenotype. Using multi-locus sequence typing and whole-genome sequencing (WGS), 18 different sequence types were identified among these isolates, 14 of which were associated with human-associated clones. The virulence gene analysis of the sequenced Klebsiella isolates (n = 7) revealed their potential pathogenicity. PCR and WGS showed that the most frequent carbapenemase genes in K. pneumoniae were blaOXA-48 and blaNDM-1, which frequently occurred together, while blaKPC-2 together with blaNDM-1 was mainly detected in K. oxytoca, E. cloacae cplx. and Citrobacter spp. Colistin resistance was observed in 40% of Klebsiella and 57% of Enterobacter isolates. Underlying mechanisms identified by WGS include known and potentially novel intrinsic mechanisms (point mutations in the pmrA/B, phoP/Q, mgrB and crrB genes) and acquired mechanisms (mcr-4.3 gene). The mcr-4.3 gene was identified for the first time in K. pneumoniae and is probably located on the conjugative IncHI1B plasmid. In addition, WGS analysis of 13 isolates revealed various virulence genes and resistance genes to other clinically relevant antibiotics as well as different plasmids possibly associated with carbapenemase genes. Our study demonstrates the important role that treated municipal wastewater plays in harboring and spreading enterobacterial pathogens that are resistant to last-resort antibiotics.


Assuntos
Carbapenêmicos , Colistina , Humanos , Colistina/farmacologia , Carbapenêmicos/farmacologia , Águas Residuárias , Klebsiella/genética , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Croácia , Antibacterianos/farmacologia , beta-Lactamases/genética , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana
11.
Infect Genet Evol ; 119: 105583, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484958

RESUMO

Klebsiella pneumoniae is a Gram-negative bacterium that colonizes the gastrointestinal tract and nasopharynx with many being linked to nosocomial infections. Extended-spectrum ß-lactamases (ESBL)-producing and carbapenem-resistant K. pneumoniae is recognized by the World Health Organization (WHO) as a critical public health concern. In this study, whole-genome sequencing (WGS) - based analysis was performed to understand the molecular epidemiology of multi-drug resistant Klebsiella spp. clinical isolates. Genome comparison, multi-locus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and whole-genome-SNP-based phylogenetic analysis (wg-SNP) were used for in-depth molecular characterization. in silico typing was used to determine the resistance genes, virulence factors, Inc. groups, and capsular types. All except one isolate were non-susceptible to meropenem and 89% were non-susceptible to ertapenem and imipenem. blaNDM, blaOXA-48, and blaKPC were the detected carbapenemases with blaNDM-1 found in half of the sequenced genomes. Resistance to colistin was detected in one isolate and was linked to several genetic alterations in crrB, pmrB, and pmrC genes. The most common plasmid type was IncFIB followed by IncR, and the Type 3 fimbriae, encoded by the mrkABCDF operon, was conserved among all isolates. The most common sequence- (ST) and K-type detected were ST147 and K64. The prevelance and the genomic relatedness of ST147 isolates, as shown by the data from SNP-based phylogenetic analysis, PFGE, and genomic clustering, may be an outbreak marker. However, this can only be validated through a more comprehensive study encompassing a wider sampling scheme and over an extended timeframe.


Assuntos
Infecções por Klebsiella , Klebsiella , Humanos , Klebsiella/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Tipagem de Sequências Multilocus , Filogenia , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , Proteínas de Bactérias/genética , Klebsiella pneumoniae , Infecções por Klebsiella/microbiologia
12.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38502064

RESUMO

Two-component regulatory systems (TCSs) are a major mechanism used by bacteria to sense and respond to their environments. Many of the same TCSs are used by biologically diverse organisms with different regulatory needs, suggesting that the functions of TCS must evolve. To explore this topic, we analysed the amino acid sequence divergence patterns of a large set of broadly conserved TCS across different branches of Enterobacteriaceae, a family of Gram-negative bacteria that includes biomedically important genera such as Salmonella, Escherichia, Klebsiella and others. Our analysis revealed trends in how TCS sequences change across different proteins or functional domains of the TCS, and across different lineages. Based on these trends, we identified individual TCS that exhibit atypical evolutionary patterns. We observed that the relative extent to which the sequence of a given TCS varies across different lineages is generally well conserved, unveiling a hierarchy of TCS sequence conservation with EnvZ/OmpR as the most conserved TCS. We provide evidence that, for the most divergent of the TCS analysed, PmrA/PmrB, different alleles were horizontally acquired by different branches of this family, and that different PmrA/PmrB sequence variants have highly divergent signal-sensing domains. Collectively, this study sheds light on how TCS evolve, and serves as a compendium for how the sequences of the TCS in this family have diverged over the course of evolution.


Assuntos
Klebsiella , Alelos , Sequência de Aminoácidos
13.
Artigo em Inglês | MEDLINE | ID: mdl-38468632

RESUMO

Purpose: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is closely related to respiratory tract infection. The aim of this study was to investigate the clinical features and prognostic factors of CRKP-induced pneumonia in acute exacerbation of chronic obstructive pulmonary disease (AECOPD) patients. Methods: A single-centre, retrospective case-control study on COPD patients hospitalized for acute exacerbation and CRKP-induced pneumonia was conducted from January 1, 2016, to December 31, 2022. The mortality rate of acute exacerbation due to CRKP-induced pneumonia was investigated. The patients were divided into the CRKP-induced pneumonic acute exacerbation (CRKPpAE) group and the non-CRKP-induced pneumonic acute exacerbation (non-CRKPpAE) group, and the clinical characteristics and prognostic factors were compared using univariate analysis and multivariate analysis. Results: A total of 65 AECOPD patients were included, composed of 26 patients with CRKPpAE and 39 patients with non-CRKPpAE. The mortality rate of CRKPpAE was 57.69%, while non-CRKPpAE was 7.69%. Compared with non-CRKPpAE, a history of acute exacerbation in the last year (OR=8.860, 95% CI: 1.360-57.722, p=0.023), ICU admission (OR=11.736, 95% CI: 2.112-65.207, p=0.005), higher NLR levels (OR=1.187, 95% CI: 1.037-1.359, p=0.013) and higher D-dimer levels (OR=1.385, 95% CI: 1.006-1.905, p=0.046) were independently related with CRKPpAE. CRKP isolates were all MDR strains (26/26, 100%), and MDR strains were also observed in non-CRKP isolates (5/39, 12.82%). Conclusion: Compared with non-CRKPpAE, CRKPpAE affects the COPD patient's condition more seriously and significantly increases the risk of death.


Assuntos
Infecções por Klebsiella , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Humanos , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Klebsiella pneumoniae , Estudos Retrospectivos , Estudos de Casos e Controles , Antibacterianos/uso terapêutico , Klebsiella , Prognóstico , Infecções por Klebsiella/diagnóstico , Infecções por Klebsiella/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Pneumonia/tratamento farmacológico , Fatores de Risco , Farmacorresistência Bacteriana
14.
Gut Microbes ; 16(1): 2333463, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545880

RESUMO

The ectopic gut colonization by orally derived pathobionts has been implicated in the pathogenesis of various gastrointestinal diseases, including inflammatory bowel disease (IBD). For example, gut colonization by orally derived Klebsiella spp. has been linked to IBD in mice and humans. However, the mechanisms whereby oral pathobionts colonize extra-oral niches, such as the gut mucosa, remain largely unknown. Here, we performed a high-density transposon (Tn) screening to identify genes required for the adaptation of an oral Klebsiella strain to different mucosal sites - the oral and gut mucosae - at the steady state and during inflammation. We find that K. aerogenes, an oral pathobiont associated with both oral and gut inflammation in mice, harbors a newly identified genomic locus named "locus of colonization in the inflamed gut (LIG)" that encodes genes related to iron acquisition (Sit and Chu) and host adhesion (chaperon usher pili [CUP] system). The LIG locus is highly conserved among K. aerogenes strains, and these genes are also present in several other Klebsiella species. The Tn screening revealed that the LIG locus is required for the adaptation of K. aerogenes in its ectopic niche. In particular, we determined K. aerogenes employs a CUP system (CUP1) present in the LIG locus for colonization in the inflamed gut, but not in the oral mucosa. Thus, oral pathobionts likely exploit distinct adaptation mechanisms in their ectopically colonized intestinal niche compared to their native niche.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Klebsiella/genética , Doenças Inflamatórias Intestinais/patologia , Inflamação , Mucosa Bucal
15.
Sci Rep ; 14(1): 5876, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467675

RESUMO

Here, we conducted a comprehensive analysis of 356 Klebsiella pneumoniae species complex (KpSC) isolates that were classified as classical (cl), presumptive hypervirulent (p-hv) and hypermucoviscous-like (hmv-like). Overall, K. pneumoniae (82.3%), K. variicola (2.5%) and K. quasipneumoniae (2.5%) were identified. These isolates comprised 321 cl-KpSC, 7 p-hv-KpSC and 18 hmv-like-KpSC. A large proportion of cl-KpSC isolates were extended-spectrum-ß-lactamases (ESBLs)-producers (64.4%) and 3.4% of isolates were colistin-resistant carrying carbapenemase and ESBL genes. All p-hv-KpSC showed an antibiotic susceptible phenotype and hmv-like isolates were found to be ESBL-producers (8/18). Assays for capsule production and capsule-dependent virulence phenotypes and whole-genome sequencing (WGS) were performed in a subset of isolates. Capsule amount differed in all p-hv strains and hmv-like produced higher capsule amounts than cl strains; these variations had important implications in phagocytosis and virulence. Murine sepsis model showed that most cl strains were nonlethal and the hmv-like caused 100% mortality with 3 × 108 CFUs. Unexpectedly, 3/7 (42.9%) of p-hv strains required 108 CFUs to cause 100% mortality (atypical hypervirulent), and 4/7 (57.1%) strains were considered truly hypervirulent (hv). Genomic analyses confirmed the diverse population, including isolates belonging to hv clonal groups (CG) CG23, CG86, CG380 and CG25 (this corresponded to the ST3999 a novel hv clone) and MDR clones such as CG258 and CG147 (ST392) among others. We noted that the hmv-like and hv-ST3999 isolates showed a close phylogenetic relationship with cl-MDR K. pneumoniae. The information collected here is important to understand the evolution of clinically important phenotypes such as hypervirulent and ESBL-producing-hypermucoviscous-like amongst the KpSC in Mexican healthcare settings. Likewise, this study shows that mgrB inactivation is the main mechanism of colistin resistance in K. pneumoniae isolates from Mexico.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Camundongos , Klebsiella , Colistina , Filogenia , beta-Lactamases/genética , Antibacterianos/farmacologia , Fenótipo , Testes de Sensibilidade Microbiana
16.
J Bacteriol ; 206(3): e0031723, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38353529

RESUMO

Cas9-based gene editing tools have revolutionized genetics, enabling the fast and precise manipulation of diverse bacterial species. However, widely applicable genetic tools for non-model gut bacteria are unavailable. Here, we present a two-plasmid Cas9-based system designed for gene deletion and knock-in complementation in three members of the Klebsiella oxytoca species complex (KoSC), which we applied to study the genetic factors underlying the role of these bacteria in competition against Klebsiella pneumoniae. Firstly, the system allowed efficient and precise full-length gene deletion via enhanced lambda Red expression. Furthermore, we tested the efficiency of two independent, functionally validated complementation strategies. Ultimately, the insertion of universal "bookmark" targets during gene deletion subsequently allows the most optimal genetic complementation in K. oxytoca, Klebsiella michiganensis, and Klebsiella grimontii. This approach offers a significant advantage by enabling the use of a single high-efficiency "bookmark" for complementing other loci or strains, eliminating the need for site-specific design. We revealed that the carbohydrate permease CasA is critical in ex vivo assays for K. pneumoniae inhibition by K. oxytoca but is neither sufficient nor required for K. michiganensis and K. grimontii. Thus, the adaptation of state-of-the-art genetic tools to KoSC allows the identification of species-specific functions in microbial competition. IMPORTANCE: Cas9-based gene editing tools have revolutionized bacterial genetics, yet, their application to non-model gut bacteria is frequently hampered by various limitations. We utilized a two-plasmid Cas9-based system designed for gene deletion in Klebsiella pneumoniae and demonstrate after optimization its utility for gene editing in three members of the Klebsiella oxytoca species complex (KoSC) namely K. oxytoca, Klebsiella michiganensis, and Klebsiella grimontii. We then adapted a recently developed protocol for functional complementation based on universal "bookmark" targets applicable to all tested species. In summary, species-specific adaptation of state-of-the-art genetic tools allows efficient gene deletion and complementation in type strains as well as natural isolates of KoSC members to study microbial interactions.


Assuntos
Sistemas CRISPR-Cas , Klebsiella , Klebsiella/genética , Klebsiella pneumoniae/genética
17.
Antimicrob Resist Infect Control ; 13(1): 21, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355621

RESUMO

BACKGROUND: Antimicrobial resistance research in uncomplicated urinary tract infection typically focuses on the main causative pathogen, Escherichia coli; however, little is known about the antimicrobial resistance burden of Klebsiella species, which can also cause uncomplicated urinary tract infections. This retrospective cohort study assessed the prevalence and geographic distribution of antimicrobial resistance among Klebsiella species and antimicrobial resistance trends for K. pneumoniae in the United States (2011-2019). METHODS: K. pneumoniae and K. oxytoca urine isolates (30-day, non-duplicate) among female outpatients (aged ≥ 12 years) with presumed uUTI at 304 centers in the United States were classified by resistance phenotype(s): not susceptible to nitrofurantoin, trimethoprim/sulfamethoxazole, or fluoroquinolone, extended-spectrum ß-lactamase-positive/not susceptible; and multidrug-resistant based on ≥ 2 and ≥ 3 resistance phenotypes. Antimicrobial resistance prevalence by census division and age, as well as antimicrobial resistance trends over time for Klebsiella species, were assessed using generalized estimating equations. RESULTS: 270,552 Klebsiella species isolates were evaluated (250,719 K. pneumoniae; 19,833 K. oxytoca). The most frequent resistance phenotypes in 2019 were nitrofurantoin not susceptible (Klebsiella species: 54.0%; K. pneumoniae: 57.3%; K. oxytoca: 15.1%) and trimethoprim/sulfamethoxazole not susceptible (Klebsiella species: 10.4%; K. pneumoniae: 10.6%; K. oxytoca: 8.6%). Extended-spectrum ß-lactamase-positive/not susceptible prevalence was 5.4%, 5.3%, and 6.8%, respectively. K. pneumoniae resistance phenotype prevalence varied (p < 0.0001) geographically and by age, and increased over time (except for the nitrofurantoin not susceptible phenotype, which was stable and > 50% throughout). CONCLUSIONS: There is a high antimicrobial resistance prevalence and increasing antimicrobial resistance trends among K. pneumoniae isolates from female outpatients in the United States with presumed uncomplicated urinary tract infection. Awareness of K. pneumoniae antimicrobial resistance helps to optimize empiric uncomplicated urinary tract infection treatment.


Assuntos
Klebsiella , Infecções Urinárias , Feminino , Humanos , Antibacterianos/farmacologia , beta-Lactamases/genética , Farmacorresistência Bacteriana , Escherichia coli , Klebsiella pneumoniae , Nitrofurantoína/farmacologia , Pacientes Ambulatoriais , Prevalência , Estudos Retrospectivos , Combinação Trimetoprima e Sulfametoxazol , Estados Unidos/epidemiologia , Infecções Urinárias/epidemiologia , Infecções Urinárias/tratamento farmacológico
18.
EBioMedicine ; 101: 104998, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340556

RESUMO

BACKGROUND: The epidemiological features of the Klebsiella pneumoniae causing bloodstream infections in Hong Kong and their potential threats to human health remained unknown. METHODS: K. pneumoniae strains collected from four hospitals in Hong Kong during the period of 2009-2018 were subjected to molecular typing, string test, antimicrobial susceptibility testing, whole genome sequencing and analysis. Clinical data of patients from whom these strains were isolated were analyzed retrospectively using univariate and multivariate logistic regression approaches. FINDINGS: The 240 Klebsiella spp. strains belonged to 123 different STs and 63 different capsule loci (KLs), with KL1 and KL2 being the major type. 86 out of 212 BSI-KP (40.6%) carried at least one of the virulence genes iuc, iro, rmpA or rmpA2. Virulence plasmid correlated well with the string test positive result, yet 8 strains without rmp genes were also hypermucoviscous, which was due to wzc mutation. The mortality rate of bloodstream infection patients was 43.0%. Univariant analysis showed that factors including renal replacement therapy (FDR adjusted p = 0.0007), mechanical ventilation (FDR adjusted p < 0.0001) and respiratory sepsis (FDR adjusted p < 0.0001) were found to pose the highest risk of death upon infection by Klebsiella spp. INTERPRETATION: This study revealed the high mortality rate and risk factors associated with bloodstream infections caused by K. pneumoniae in Hong Kong, which warrants immediate action to develop effective solution to tackle this problem. FUNDING: Theme Based Research Scheme (T11-104/22-R), Research Impact Fund (R5011-18 F) and Postdoctoral Fellowship (PDFS2223-1S09).


Assuntos
Infecções por Klebsiella , Sepse , Humanos , Hong Kong/epidemiologia , Klebsiella/genética , Epidemiologia Molecular , Estudos Retrospectivos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Antibacterianos
19.
PLoS One ; 19(2): e0297407, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38335186

RESUMO

BACKGROUND: Multidrug-resistant (MDR) Klebsiella species are among public health important bacteria that cause infections difficult to treat with available antimicrobial agents. Infections with Klebsiella lead to high morbidity and mortality in developing countries particularly in patients admitted to the intensive care unit. This systematic review and meta-analysis aimed to determine the pooled prevalence of MDR Klebsiella species from different human specimens using studies conducted in Ethiopia from 2018-2022. METHODS: We have systematically searched online databases such as PubMed/Medline, Google Scholar, Hinari, African journals online, Web of Science, Cochrane, and grey literature (Addis Ababa University and Hawassa University) to identify studies reporting the proportion of MDR Klebsiella species in Ethiopia. Published articles were selected based on the Preferred Reporting Item of Systematic Review and Meta-analysis (PRISMA). R-Studio version 4.2.3 was used to conduct pooled prevalence, heterogeneity test, and publication bias. A binary random effect model was used to determine the pooled prevalence. Heterogeneity was checked with the inconsistency index (I2). Publication bias was checked with a funnel plot and Egger test. Sensitivity analysis was conducted with leave-one-out analysis. Joanna Briggs Institute's critical appraisal tool for prevalence studies was used to check the quality of each article. RESULTS: In this systematic review and meta-analysis, 40 articles were included in which 12,239 human specimens were examined. Out of the total specimens examined, 721 Klebsiella species were isolated and 545 isolates were reported to be MDR Klebsiella species. The prevalence of MDR Klebsiella species ranged from 7.3%-100% whereas the pooled prevalence of MDR Klebsiella species was 72% (95% CI: 63 - 82%, I2 = 95%). Sub-group analysis based on region revealed the highest prevalence of MDR from Addis Ababa (97%) and the least from the Somali region (33%); whereas sub-group analysis based on the specimen type indicated the highest prevalence was from blood culture specimens 96% and the least was from other specimens (ear and vaginal discharge, and stool) (51%). CONCLUSION: Our finding indicated a high prevalence of MDR Klebsiella species found in different human specimens. The prevalence of MDR Klebsiella varies across regions in Ethiopia, age, the type of specimens, source and site of infection. Therefore, integrated action should be taken to reduce the prevalence of MDR Klebsiella species in regional states and focus on clinical features. Effective infection and prevention control should be applied to reduce the transmission within and outside health care settings.


Assuntos
Bactérias , Klebsiella , Feminino , Humanos , Prevalência , Etiópia/epidemiologia , Unidades de Terapia Intensiva
20.
PLoS One ; 19(2): e0297921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315668

RESUMO

For the first time since 2015, the World Health Organization's (WHO) global Antimicrobial Resistance and Use Surveillance (GLASS) featured both global reports for antimicrobial resistance (AMR) and antimicrobial consumption (AMC) data in its annual reports. In this study we investigated the relationship of AMR with AMC within participating countries reported in the GLASS 2022 report. Our analysis found a statistically significant correlation between beta-lactam/cephalosporin and fluoroquinolones consumption and AMR to these antimicrobials associated with bloodstream E. coli and Klebsiella pneumoniae among the participating countries (P<0.05). We observed that for every 1 unit increase in defined daily dose DDD of beta-lactam/cephalosporins and quinolone consumptions among the countries, increased the recoveries of bloodstream-associated beta-lactam/cephalosporins-resistant E. coli/Klebsiella spp. by 11-22% and quinolone-resistant E. coli/Klebsiella spp. by 31-40%. When we compared the antimicrobial consumptions between the antimicrobial ATC (Alphanumeric codes developed by WHO) groups and countries, we observed a statistically significant higher daily consumption of beta-lactam-penicillins (J01C, DDD difference range: 5.23-8.13) and cephalosporins (J01D, DDD difference range: 2.57-5.13) compared to other antimicrobial groups among the countries (adjusted for multiple comparisons using Tukey's method). Between the participating countries, we observed a statistically significant higher daily consumption of antimicrobial groups in Iran (DDD difference range: 3.63-4.84) and Uganda (DDD difference range: 3.79-5.01) compared to other participating countries (adjusted for multiple comparisons using Tukey's method). Understanding AMC and how it relates to AMR at the global scale is critical in the global AMR policy development and implementation of global antimicrobial stewardship.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli , Farmacorresistência Bacteriana , Anti-Infecciosos/farmacologia , Cefalosporinas/farmacologia , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , beta-Lactamas/farmacologia , Klebsiella
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...